# Evaluation of Inflammatory Status with Procalcitonin and Neopterin in Healthy Overweight And Obese Adults According to Waist Hip Ratio and Body Mass Index

Cigdem Sönmez Murat Cağlayan

- Common health problem
- that has a worldwide prevalence,
- Especially in developed countries.
- tripled between 1975 and 2016.
- World Health Organization (WHO)
- "global epidemic disorder"



## **Obesity defination**

- a chronic energy metabolism disorder
- excessive fat storage in the body,
- physical and mental problems
- must be treated



- Abnormal and excessive fat accumulation
- a chronic energy metabolism disorder
- different cell types
  - monocyte-derived macrophages and
  - dendritic cells in adipose tissue.
- Adipose tissue has
  - autocrine
  - paracrine
  - endocrine
- Has been accepted as an active endocrine organ



- The distribution of body fat effects the risk that is assocated with obesity
- Anthropometric measurements
  - Body Mass Index (BMI) and
  - Waist Hip Ratio (WHR)
- BMI does not have the ability to differentiate fatness as central or visceral
- WHR has been shown to be more reflective of visceral fat and central adiposity, as well as a better predictor of obesity related disorders



- Acting like an endocrine tissue,
- A source of various proinflammatorycytokines chemokines growth factors
- the chronic low-grade inflammation of White fat tissue
- Disorders associated with obesity
  - insulin resistance,
  - impaired glucose tolerance, and even
  - diabetes
  - cardiovascular diseases (CVD
  - myocardial infarction (MI)
  - stroke



## **Adipose Tissue**

- an important source of pro-inflammatory mediators.
- C-reactive protein (CRP)

the liver, tumor necrosis factor-alfa (TNF- $\alpha$ ), interleukin–1 (IL–1), and interleukin–6 (IL–6)

- Neopterin (NP)
  - human monocyte-derived macrophages, Th1-type cytokine, interferon γ (INF-γ), NP concentrations reflect oxidative stress levels caused by immune system activation
- Procalcitonin
  - Altough known as an indicator for early diagnosiis of sepsis
  - Expressed and produced from activated macrophages
  - A potential marker for the evaluation of obesity.



#### **Obesity and Inflamatory markers**

- evaluate the predictive role of the
- Hs-CRP, NP, PCT levels
- obese, overweight and normal-weight healthy individuals
- BMI and WHR.



#### **Materiel and methods**

- Abant İzzet Baysal University Faculty of Medicine Education and Research Hospital Clinical Chemistry Laboratory.
- 67 participants
- mean age of 41.1 ± 10 years
- 24 Female 43 Male
- A written informed consent was obtained from each participant before entering the study. Normal weights were taken as the control group.



## **Anthropometric Measurements**

- Height, weight, waist and hip circumference measurements
- the same trained person
- in a standardized manner.
- Patient were grouped according to their WHR.
  - WHR <0.90, Group A(n= 31)
  - WHR ≥ 0.90, Group B (n= 36).
- Patient were grouped according to BMI (kg/m<sup>2</sup>)
  - BMI ≥ 30 kg/m<sup>2</sup> (obese, Group 3, n=24)
  - BMI = 25–29.9 kg/m<sup>2</sup> (overweight, Group 2, n=22)
  - In group I BMI < 25 kg/m<sup>2</sup> (control, Group 1, n= 21).



## **Biochemical Analysis**

- Venous blood samples
- 30 min of rest
- 7:30 and 9:30 am and after
- a 12 overnight fast.
- Glucose and lipid parameters Abbott C8000
- High sensitivity-CRP (hs-CRP) BN prospec,
- PCT the Kryptor
- NP -DRG neopterin ELISA kit
- White Blood Cell (WBC) -Cell-Dyn 3700 cell counter
- ESR Sed Rate Screener 100



# **Statistical analysis**

- Demografic statistic
  - mean ± standard deviation.
- Distributions of all parameters Shapiro-Wilk test.
- Comparison between Group A Group B (according to WHR)
  - T-test parametric distribution
  - Mann-Whitney U test -the nonparametric distribution.
- Comparison between Group 1-2-3 (according to BMI)
- One-way ANOVA test and then Post-Hoc test -for parametric distributions
- Kruskal Wallis test -nonparametric distribution.
- There was no difference between these tests, so the results were given with the One- Way ANOVA test.
- SPSS 15. 0 program was used for statistics. Statistical significance was accepted as p <0.05.



Table 1. Demographic data of the study group according to BMI

|                  | TOTAL        | GROUP 1         | GROUP 2         | GROUP 3         | Р      |
|------------------|--------------|-----------------|-----------------|-----------------|--------|
| Age (Year)       | 41.1 ± 10    | 38.5 ± 10.4     | 42.3 ± 9.4      | 42.1 ±10.3      | 0.381  |
| WHR              | 0.88 ± 0.8   | $0.82 \pm 0.08$ | $0.92 \pm 0.04$ | $0.90 \pm 0.09$ | <0.001 |
| Glucose (mg/dl)  | 93.3 ± 8.5   | 92.2 ± 10.7     | 92.8 ± 6.8      | 94.7 ±7.8       | 0.605  |
| T. Chol. (mg/dl) | 193 ± 32.8   | 179.2±29.4      | 205.9 ± 33.3    | 193.4 ± 28.1    | 0.026  |
| TG (mg/dl)       | 144.4 ± 90.1 | 87.4 ± 29.4     | 167.2±102.5     | 173.3 ± 93      | 0.01   |
| HDL (mg/dl)      | 44.7 ± 9.8   | 51.8 ± 12       | $43.2 \pm 6.9$  | $40.0 \pm 6.0$  | <0.01  |
| VLDL (mg/dl)     | 28.9 ± 18    | 17.5 ± 5.9      | 33.45 ±20.4     | 34.6 ±18.6      | 0.01   |
| WBC(*1000)       | 6.6 ± 1.3    | $6.3 \pm 1.2$   | 6.58 ± 1.1      | $6.9 \pm 1.4$   | 0.292  |
| ESR (mm/h)       | 8 ± 6.9      | 4.6 ± 3.1       | $7.0 \pm 5.3$   | 12.0 ± 1.4      | 0.01   |
| Male/Female (n)  | 43/24        | 16/5            | 17/5            | 10/14           | -      |
| HS-CRP (mg/dl)   | 3.1 ± 3.57   | 1.4 ± 1.9       | 2.8±0.6         | 4.8 ± 4.0       | 0.005  |
| NP (nmol/l)      | 1.8± 0.48    | 1.7 ± 0.5       | 1.9±0.5         | 1.8 ± 0.5       | 0.650  |
| PCT (ng/ml)      | 0.27± 0.18   | 0.18± 0.14      | 0.3± 0.20       | 0.30 ± 0.18     | 0.011  |
|                  |              |                 |                 |                 |        |

Table 2. Demographic data of the study group according to WHR

|                  | TOTAL          | GROUP A       | GROUP B         | Р      |
|------------------|----------------|---------------|-----------------|--------|
| Age (year)       | 41.1 ±10       | 38.9 ± 9.2    | 43.4 ± 10.6     | 0.108  |
| WHR              | $0.88 \pm 0.8$ | 0.81 ± 0.06   | $0.94 \pm 0.04$ | <0.001 |
| Glucose (mg/dl)  | 93.3 ± 8.5     | 93.1 ± 6.9    | 93.9 ± 9.9      | 0.395  |
| T. CHOL. (mg/dl) | 193 ± 32.8     | 186.6 ± 34.1  | 200.0 ± 31.2    | 0.139  |
| TG (mg/dl)       | 144.4 ± 90.1   | 109.4 ± 68.6  | 171.1 ± 95.3    | <0.001 |
| HDL (mg/dl)      | 44.7 ± 9.8     | 48.5 ± 11.0   | 42.0 ± 7.0      | 0.004  |
| VLDL (mg/dl)     | 28.9 ± 18      | 21.9 ± 13.7   | 34.2 ± 19.0     | <0.001 |
| WBC(*1000)       | 6.6 ± 1.3      | 6.5 ± 1.2     | 6.7 ± 1.3       | 0.605  |
| ESR (mm/h)       | 8.0 ± 6.9      | $9.3 \pm 7.6$ | $6.88 \pm 6.2$  | 0.083  |
| Male/Female (N)  | 43/24          | 12/19         | 29/5            | -      |
| HS-CRP (mg/l)    | 3.1 ± 3.57     | 2.6 ± 3.2     | 3.5 ± 3.9       | 0.251  |
| NP (nmol/l)      | 1.8± 0.48      | 1.7 ± 0.5     | 1.9 ± 0.4       | 0.073  |
| PCT (ng/ml)      | 0.27± 0.18     | 0.3 ± 0.2     | 0.3 ± 0.16      | 0.419  |

# Conclusion

- the increase in total fat mass in the body may lead to an increase in inflammation markers.
- the increase in inflammation markers such as CRP and PCT could be considered as a possible stimulant in the evaluation of obesity for the predictive effect of clinical conditions such as insulin resistance, CVD
- The correlation of BMI with the inflamation parameters was found more predictive than WHR in our study results.

# Thank you for your attention

